

Technology · Connections · Results

Optimizing your Batch Window

Scott Drummond (<u>spd@us.ibm.com</u>) Stefan Wirag (<u>stefan.wirag@de.ibm.com</u>) IBM Corporation

Wednesday, March 2, 2011 Session 8916

Agenda

- What differentiates "batch" workloads from online workloads?
- 7 Key Strategies for Batch Window Reduction
- z/OS Storage Enhancements for Batch Optimization
 - Optimizing I/O
 - Improving Application Efficiency
 - Increasing Parallelism
 - Reducing the Impact of Failures
- Tuning Knobs in the Workload / Performance Management area
 - Service Policy Overrides
 - Intelligent Resource Director
 - WLM-managed Batch Initiators
 - Scheduling Environments
 - Batch & online concurrently
 - Resource Groups, CPU Critical

What differentiates "batch" workloads from online workloads?

Batch processing system for processing data with little or no operator intervention. This allows efficient use of the computer and is well suited to applications of a repetitive nature, such as file format conversion, payroll, or the production of utility bills.

In *interactive computing*, by contrast, data and instructions are entered while the processing program is running.

Hutchinson Encyclopedia

Batch vs. Online

- Differences are highly dependent on workload specifics
- Sequential access pattern for batch vs. direct access for online
- Workload may move to different systems
- In batch window different devices may be used than during online (DASDs, tape)
- Business importance inversion: night shift vs. prime shift

7 Key Strategies for Batch Window Reduction

- Ensuring the system is properly configured
- Implementing data in memory (DIM) (not covered in this presentation)
- Optimizing I/O
- Optimizing parallelism
- Reducing the impact of failures
- Increasing operational effectiveness
- Improving application efficiency

Thanks to Martin Packer, IBM Mainframe Performance Consultant for use of his 7 strategies

Technology · Connections · Results

z/OS Storage enhancements for Batch Optimization

This section is based on strategies from the IBM Redbook "Batch Modernization on z/OS" (sg24-7779), which in turn is based on ideas from "SG24-2557 Parallel Sysplex Batch Performance"

Technology · Connections · Result

Optimizing I/O - I/O optimization is most important when the batch workload is I/O-intensive. Where there is little spare CPU capacity I/O optimization could cause an I/O bottleneck to be replaced by a CPU bottleneck.

Optimizing I/O

- Optimizing I/O means ensuring the I/O processing done by batch jobs is performed as quickly as possible, such as:
 - The correct use of DS8000 Cache functions this can be monitored with OMEGAMON XE for Storage and RMF – For multi-operating system DS8000's use TPC for Disk
 - Exploiting modern Channel Programming functions such as zHPF and MIDAWs
 - Using the fastest FICON channels 8 Gb/s
 - Using HyperPAV to minimize IOSQ time and take advantage of 3390 mod 9, "27", "54" and EAV ("A") format volume SHARE

Optimizing I/O - continued

- Optimizing I/O means ensuring the I/O processing done by batch jobs is performed as quickly as possible, such as:
 - Using DS8000 DSN level FlashCopy for interim backup steps
 - Dataset separation by volume (DB2)
 - DFSMShsm and DFSMSrmm Fast Tape Positioning
 - DFSMShsm usage of VTL's (TS7720 and TS7740) and new TS7680 De-Duplication support
 - VSAM buffering improvements and SMS construct usage
 - Avoid outages by using z/OS HyperSwap

Optimizing I/O: High Performance FICON for System z (zHPF)

- Performance/Growth Up to 2x higher I/O throughput per channel
 - Realistic workloads with a mix of data set transfer sizes can see 30 70% of FICON I/Os utilizing zHPF, resulting in up to a 10-30% channel utilization savings.
- Management Can reduce manual tuning
- TCO May require fewer channels on the z server and on the disk system

nology · Connections · Result

Optimizing I/O: DFSMS and SSD

<u>Value</u>

- Management Helps users allocate new data sets to the desired type of disk
- Management Supports tools and commands that report on types of disk installed

Optimizing I/O: IBM FlashCopy SE (Space-Efficient)

SHARE Technology · Connections · Results

A technology optimization for short-term point-in-time copies

Value

- Growth/TCO Reduces physical capacity needed to hold volume copies
 - Target volume capacity savings can be up to 80%
- Growth/TCO Helps reduce energy and floor space requirements

Optimizing I/O: IBM HyperSwap

Technology · Connections · Results

Higher, cost-effective information availability for System z

VALUE

- Availability "Hides" disk system outages from applications
- Management Managed by Tivoli Storage Productivity Center for Replication (TPC-R) for System z

Technology · Connections · Results

Improving application efficiency - Looking at ways to make the applications process more efficiently

Improving application efficiency

- Replacing self-written processing with DFSORT processing as this is optimized for speed.
- Older DFSORT enhancements that people might have missed
 - OUTFIL writes multiple outputs in a single pass over the input data
 Note: 1 or zero sorts in a single invocation
 - Automatic BatchPipes/MVS detection for input and output data sets
 - ICETOOL combines new features with previously available DFSORT features to perform complex sorting, copying, merging, reporting and analytical tasks using multiple data sets in a single job step.
 - Substring search, Bitwise operations and Arithmetic
 - Timestamps and Y2K conversions
 - And relative date arithmetic
- New DFSORT ICETOOL enhancements
 - DATASORT
 - An easy way to sort records between header and trailer records
 - Header and trailer records are left in place
 - SUBSET
 - An easy way to create a subset of the records, based on record number
 - And easy to send the complement of the subset to another data set RE

Technology · Connections · Results

Increasing Parallelism - running more things alongside each other

Note: To be able to run more work in parallel, you need adequate resources, most importantly spare CPU capacity and memory, and adequate I/O bandwidth.

SHARE 2011

Increasing Parallelism

- Reducing the elapsed time of a set of jobs by running more of them alongside each other.
 - Performing I/O in parallel, using techniques such as DFSMS striping
 - Cloning batch jobs to work against subsets of the data
 - Usage of Batchpipes
 - Use of VSAM Record Level Sharing
 - Use of DFSMStvs Transactional VSAM Services

Technology · Connections · Results

Reducing the impact of failures - Reducing the impact of failures means ensuring that any prolongation of the run time of the batch workload by failures is minimized.

Reducing the impact of failures: TPC for Replication Family

- TPC for Replication is software running on a server that manages IBM disk based replication functions, i.e.:
 - FlashCopy
 - Metro Mirror
 - Global Mirror
 - Metro Global Mirror
- TPC for Replication
 - Provides central control of your replication environment
 - Helps simplify and automate complex replication tasks without scripts
 - Allows testing of D/R at any time using Practice Volumes
 - Provides end to end management and tracking of the copy services
 - Provides management of planned and unplanned disaster recovery procedures
 - Manage your replication from the server of your choice, z/OS or open systems servers, z/OS and open data

2011

Value

- Availability Remote site quickly reflects same data as the local site
- Management Promotes local-remote data consistency for ease-of-recovery
- Performance/TCO Reduces link bandwidth use, helps improve the performance of other work

Reducing the impact of failures : IBM Tivoli OMEGAMON XE

Technology · Connections · Results

- A mainframe STORAGE monitor, real-time and historical
- XE user interface, comes with the CUA UI component
- A wide breadth of mainframe storage information:
 - Space (storage groups or user groups ... define your own)
 - Performance (storage groups or user groups ... define your own)
 - Tape / VTS
 - DFSMSrmm support
 - CACHE
 - Channels (FICON)
 - Control Units
 - DFSMShsm (View your HSM queues, control Datasets, etc.)
 - DFSMShsm/DFSMSdss/DFSMSrmm/ICKDSF online toolkit
 - SMS constructs
 - DS8000 support
 - Ability to see all logical volumes on a physical disk
 - Powerful applications view
 - Powerful dataset view and action capability
 - Integration capabilities from TEP interface
 - Submit JCL in response to monitored situations

Tivoli Enterprise Portal (TEP) Enabled

Reducing the impact of failures : Fast Replication Overview

SHARE Technology · Connections · Results

HSM function that manages **Point-in-Time copies**

• Combined with DB2 BACKUP SYSTEM, provides non-disruptive backup and recovery to any point in time for DB2 databases and subsystems (SAP)

★Recovery at all levels from either disk or tape!

- Entire copy pool, individual volumes and ...
- Individual data sets

Technology · Connections · Results

Tuning Knobs in the Workload / Performance Management area

Ensuring proper system configuration – Service Policy Overrides

- By specifying several Service Policies in a WLM Service Definition you can define different goals for prime shifts and night shifts
- In a Service Policy you can override specific goals or resource groups in the base service definition
- A Service Policy can be activated manually or via automation

Ensuring proper system configuration – Intelligent Resource Director (IRD)

What is IRD?

- Set of functions that distribute Central Processor Complex (CPC) resources based on business importance
- Problem areas being addressed:
 - Workloads may change over the course of a day, week, month, year...
 - Business priorities may change over the course of a day, week, month, year...
 - E.g., online vs. batch, production vs. test, workload fluctuations, or periodic work
 - Single static configuration may be sub-optimal to handle different workload mixes
 Distribute resources based on workload and service level agreements (WI M goals)
 - Distribute resources based on workload and service level agreements (WLM goals)
 - Reliability problems, e.g. caused by single points of failure
- Consists of
 - 1. LPAR CPU Management
 - LPAR Weight Management
 - LPAR Vary CPU Management
 - 2. Dynamic Channel Path Management (DCM)
 - **3**. Channel Subsystem Priority Queuing (CSSPQ)
 - BTW... Not part of IRD: I/O Priority (at control unit level)

LPAR Clusters

 Scope of IRD management is the LPAR Cluster (LPC)

- = Set of LPARs on same CPC, which are part of same Sysplex
- For CPU management of zLinux systems, specify the sysplex name as CP management cluster name on *Customize Image Profiles* panel
- For DCM, IOCLUSTER keyword in the IODF must match Sysplex name.
- LPARs with dedicated General Purpose Processors (CPs) can join a cluster
 - But will not be enabled for WLM LPAR Weight and Vary CPU Management.
- Multi-image/Sysplex LPCs require a CF structure (except for CSSPQ)

LPAR Weight Management

 Weights are shifted within an LPAR cluster

- The weight of an LPC does *not* change.
- Single image LPCs cannot perform LPAR weight management

- The weight of an LPAR may take any value in the range defined by minimum and maximum processing weight values.
 - LPARs may consume more capacity when other LPARs have no demand and no capping is in effect
 - Weight will not be increased while LPAR is being capped
- Note: Tivoli System Automation ProcOps or a homegrown solution can be used to change weights beyond the LPAR cluster scope in Anaheim

Weight Management Algorithm

Vary CPU Management

- Number of logical processors (LCPs) left high as long as free CPC capacity allows for sub-optimal LPAR overhead.
- When current #LCPs drops out of interval near optimum #LCPs then
 - Config processors offline or online, respectively
 - Interval depends on
 - current #LCPs
 - soft capping state
 - Minimum number of online LCPs is determined by maximum of
 - number LCPs required to consume current weight,
 - number specified by IEAOPT VARYCPUMIN

IEE174I 10.42.49 DISPLAY M 094									
PROCESSOR STATUS									
ID CPU SERIAL									
00 + 0C9F092064									
01 - W									
02 – W									
03 + 3C9F092064									
04 + 4C9F092064									
05 + 5C9F092064									
06 –									
07 –									
08 N									
CPC ND = 002064.116.IBM.02.000000099F09									
CPC SI = 2064.116.IBM.02.000000000099F09									
+ ONLINE - OFFLINE . DOES NOT EXIST									
W WLM-MANAGED N NOT AVAILABLE									

Weight- and Vary CPU Management Controls

- LPAR Controls at HMC or Support Element
 - "WLM Managed" check box
 - Initial, Minimum and Maximum processing weights
 - Configure for flexibility but use safety net
 - Number of non-dedicated Central Processors

		Last reset profi Input/Output co	le attempted: onfiguration dat	ta set (IOCDS):	A0 328A1	70
ent	WLM	Initial	Minimum	Maximum	Initial	

CPC Name:

Logical Partition	Active	Defined Capacity	Current Weight	WLM Managed	Initial Processing Weight	Minimum Processing Weight	Maximum Processing Weight	Initial Capping	Current Capping	Dedicated Central Processors	Number of Non-dedicated Central Processors	Logical Partition
SCLM1	Yes	0	400		400	0	0		No	0	7	SCLM1
SCLM2	Yes	0	202		202	0	0		No	0	3	SCLM2
SCLM3	Yes	0	202		202	0	0		No	0	3	SCLM3
VM9	Yes	0	0	-	-	-	-	-	No	8	0	VM9
COM1	Yes	0	100		100	0	0		No	0	3	COM1
COM2	Yes	0	80		80	0	0		No	0	5	COM2
COM4	Yes	0	80		80	0	0		No	0	5	COM4
IRL1	No	0	0		1	0	0		No	0	1	IRL1
IRD1	Yes	0	251		200	50	500		No	0	7	IRD1
IRD2	Yes	0	151	2	200	50	500		No	0	4	IRD2
IRD3	Yes	0	100		102	15	500		No	0	3	IRD3
CFIRD	Yes	0	49		49	0	0		No	0	1	CFIRD

Change LPAR Controls

TP3TVM00

Processor running time

Warning: It is recommended that you select Dynamically determined by the system.' Selecting 'Determined by the user' risks suboptimal use of processor resources.

- Operator interaction:
 - CPUs that were configured offline by operator will not be varied online by WLM
 - Operator cannot config online a processor that is offline by WLM

- IEAOPTxx
 - VARYCPU=NO/<u>YES</u>
 - VARYCPUMIN=number (*)
- SET OPT=xx

Technology · Connections · Result

20.24,00 20.36,00 20.38,00

00.24,00

2011

in Anaheim

IRD CPU Management in Action

RE Technology · Connections · Results

Service Consumed

Channel Subsystem I/O Priority Queuing

- Allows WLM to assign a priority to an I/O request
- Channel subsystem can now use a priority managed queue
 - Prior to this time the channel subsystem used a FIFO queue
 - Effective when there is contention in the CSS
- Complements Priority Queuing in other parts of the I/O Subsystem
 - IOS UCB Queue
 - In control unit

CSSPQ Controls

	Change LPAR I/O Priority Queuing									
Input/output configuration data set (IOCDS): A0										
Global input/output priority queuing: Disabled										
Maximum global inp	ut/output priority queuing value:			15						
	Logical Partition	Active	Minimum input/output priority	Maximum input/output priority						
	SCLM1	Yes		0 🔽						
	SCLM2	Yes	0	0						
	SCLM3	Yes		0 🔽						
	VM9	Yes	0	0 🔽						
	COM1	Yes	0 💟	0						
	COM2	Yes		0 🔽						
	COM4	Yes	0	0 🔽						
	IRL1	No		0 🔽						
	IRDI	Yes	0	15 🔽						
\subset	IRD2	Yes		15 🔽						
	IRD3	Yes	0	8						
	CFIRD	Yes	0	0						

Note: WLM I/O Priority Management must be enabled in the WLM Service Definition for CSSPQ

- 1. Image profiles:
 - Range of I/O priorities that can be used by the partition
 - WLM maps priority to available range
 - 0-15 can be specified; range of 8 is recommended
 - Specify same range for all members of an LPC
- 2. Reset profile:
 - Global switch to activate CSSPQ

Optimizing parallelism – WLM-managed Batch Initiators

 Dynamic, goal-oriented management of the time that jobs spend waiting for an initiator

- Multi-system workload balancing
 - This does NOT imply balancing for equal CPU utilization!
- Reduced operational demand
- Improved reporting of job response time and pre-execution job delays
- WLM does not
 - Deadline scheduling
 - Job history management
 - Consumable or multi-state resource

WLM-managed Batch Initiators What Does WLM Manage?

SHARE Technology · Connections · Results

- Number of initiators
 - Queue delay samples identify delays due to lack of initiators
 - Adjustments are made based on goals and importance
- Placement of initiators
 - Select system with "largest available" capacity
 - Awareness of system affinities
 - Work is displaced if necessary Importance is used to minimize impact
- Exploitation / migration on job class bases
 - The previously independent processes of initiation and performance management are now linked together

The Big Picture – WLM-managed Batch Jobs,

JOB CLASS=1 **WLM** Policy Classification Job Queue **WLM** JOB SRVCLASS₌ Sampling JES Pre-execution delays: Sampling (checkpoint cycle) Ineligible delays **SRM** Resource/system affinity delays
Queue delays Initiation Sampling Execution delays Init • JOB SRVCLASS= in Anaheim 2011

Technology · Connections · Results

WLM-managed Job Classes

SHARE Technology · Connections · Results

- WLM management is done on a job class basis
- Each job class has a mode assigned via the JES2 init deck or the \$T JOBCLASS command
 - MODE=JES is the default
 - MODE=WLM designates WLM-managed job classes that run jobs in WLM-managed initiators
- Initiator definitions do not have to be updated to remove references to WLM-managed job classes

JOBCLASS (A) JOBCLASS (B)	MODE=JES MODE=WLM
JOBCLASS(C)	MODE=WLM
:	
INIT1 ABC	
INIT2 BC	

JES Initiators vs. WLM Initiators

SHARE Technology · Connections · Results

- JES initiators
 - Started via INIT procedure
 - Select jobs from JESmanaged job classes only
 - Started and stopped by operators
 - Consume job numbers

- WLM initiators
 - Started via INIT procedure
 - Select jobs from WLMmanaged job classes only
 - Started and stopped by WLM based on
 - Available capacity
 - Goals
 - Started under MSTR subsystem, so they do not consume job numbers

Pre-Execution Job Delays

- User-specified delay

 TYPRUN=HOLD and TYPRUN=JCLHOLD

 Operational delay

 Job held
 Job class held

 Scheduling delay

 Job class execution limit
 - Duplicate jobnames
- Resource or system affinity delay
 - Scheduling environment is not available
 - System is not available
- Queue delay
 - Waiting for an initiator to select a job

RMF Support

- RMF shows
 - Job delay data (Included in response times)
 - Execution time
 - Overall response time
- In several reports
 - Monitor III: SYSSUM, SYSRTD, and GROUP reports
 - Postprocessor: WLMGL report

REPORT BY	Y: POLIC	CY=POLPPPO2	2 WORI	KLOAD=WLM	NORM	SERVIC	E CLASS AL	S=BAT_P_HI =NONE	RES	SOURCE GR	OUP=*NO	NE	PERIOD=	=1 IMPO	RTANCE=2		
-TRANSAC	TIONS-	TRANS-TIM	Е ННН.М	M.SS.TTT	DASD	I/0	SE	RVICE	SERV	ICE TIME	APE	PL %	PROM	OTED	STO	RAGE	
AVG	1.30	ACTUAL		7.623	SSCHRT	342.1	IOC	41520	CPU	73.582	CP	24.72	BLK	0.000	AVG	708	3.22
MPL	1.30	EXECUTION		6.979	RESP	2.3	CPU	2559K	SRB	0.428	AAPCP	0.00	ENQ	0.001	TOTAL	923	6.28
ENDED	18	QUEUED		643	CONN	0.3	MSO	0	RCT	0.018	IIPCP	0.00	CRM	0.000	SHARED	:	2.81
END/S	0.06	R/S AFFIN		0	DISC	1.8	SRB	14894	IIT	0.129			LCK	0.000			
#SWAPS	3	INELIGIBL	2	0	Q+PEND	0.2	TOT	2616K	HST	0.000	AAP	N/A			-PAGE-I	N RA	TES-
EXCTD	0	CONVERSIO	N	1.048	IOSQ	0.0	/SEC	8719	AAP	N/A	IIP	0.00			SINGLE		0.0
AVG ENC	0.00	STD DEV		11.584					IIP	0.000					BLOCK		0.0
REM ENC	0.00						ABSRP	TN 6687							SHARED		0.0
MS ENC	0.00						TRX S	ERV 6687							HSP		0.0
GOAL: EXECUTION VELOCITY 60.0% VELOCITY MIGRATION: I/O MGMT 68.8% INIT MGMT 66.4%																	
	RESPON	SE TIME EX	PERF	AVG -	-EXEC U	SING%			EXEC	DELAYS %	;		-USING%		DELAY %		용
SYSTEM		VE	L% INDX	ADRSP (PU AAP	IIP I/O	TOT	CPU I/O					CRY CN	t unk	IDL CRY	CNT	QUI
SYSA	N	/A 68	.8 0.9	2.2	11 N/A	0.0 14	11	8.6 2.7					0.0 0.	0 28	36 0.0	0.0	0.0

S H A R E Technology · Connections · Results

in Anaheim

2011

WLM-managed Batch Initiators Algorithms: The Short Version

- Policy adjustment:
 - Initiators are dynamically started by WLM to meet service class period goals by reduction of batch queue delays
 - WLM selects the system based on
 - Available system resources based on the job's importance
 - Availability of waiting batch jobs
- Resource adjustment:
 - Start additional initiators if jobs are waiting and unused capacity is available
 - Based on service class history
 - Up to 5 at a time
- Initiators are dynamically stopped by WLM
 - When significantly more initiators exist than needed
 - (> 1.5 times avg. (active+queued) jobs)
 - In case of CPU or memory shortage
 - After one hour of inactivity
 - As part of Initiator re-balancing

Technology • Connections •

WLM-managed Batch Initiators Good Guys, Bad Guys...

- Some job classes might not be good candidates for WLM goal managed initiators
 - No relationship between response time and number of initiators
 - Too low arrival/ending rate or consumption
 - No good correlation between goal attainment of job and amount of available resources
 - Other delays
 - Need for immediate initiation
 - Jobs released "just in time" by scheduling systems
 - Jobs that are critical for interactive work

Increasing operational efficiency – Scheduling Environments

SHARE Technology · Connections · Results

- Scheduling Environments help ensure that batch jobs are sent to systems that have the appropriate resources to handle them
- A Scheduling Environment is a list of Resource names along with their required states
- Resources can represent
 - actual physical entities, e.g. a data base or peripheral device
 - intangible qualities such as a certain period of time, e.g. second shift
- Scheduling Environments and Resources with their required state are specified in the WLM service definition
- Operator or automation sets actual Resource state on each system
- JES checks the Scheduling Environment associated with each arriving batch job and then assigns the work to a system where the actual Resource states match the required Resource states

Increasing operational efficiency – Scheduling Environments Example

SHARE Technology · Connections · Results

Protecting workloads – Resource Groups

A Resource Group is associated to one or

Defines the service that the related Service

more Service Classes

Resource groups are a means to protect work when proper classification, goals and importance won't be sufficient.

Protecting workloads – Comparison of Resource Group Types

SHARE Technology · Connections · Results

Definition	Scope	Advantages	Possible Disadvantages
Type 1 RG: Service Units	Sysplex	 Allows balancing of resources across members in a sysplex 	 Requires adjustments for Migration Difficult to monitor Not applicable to constrained work on a single system in a sysplex environment
Type 2 RG: % of LPAR	System	 Allows to control work on single members in a sysplex ✓ <u>Stable for migrations</u> 	 Need to understand what LPAR capacity really is
Type 3 RG: % of LCPs	System	 Allows to control work on single members in a sysplex <u>Easy and straight forward definition</u> 	 Requires adjustments for migration

Protecting workloads – CPU Critical – Long Term CPU Protection

- Specified at the service class level
- Ensures that lower important work never gets a higher dispatch priority than the higher important work defined with the CPU critical attribute
 - You still need to define appropriate goals to CPU Critical work
 - It is not a full protection against everything
 - The work is still managed towards a goal

Documentation

z/OS MVS Planning: Workload Management (SA22-7602) http://publibz.boulder.ibm.com/epubs/pdf/iea2w1b0.pdf

z/OS MVS Programming: Workload Manager Services (SA22-7619) http://publibz.boulder.ibm.com/epubs/pdf/iea2w2b0.pdf

Redbook – System Programmer's Guide to: Workload Manager (SG24-6472) http://www.redbooks.ibm.com/redbooks/pdfs/sg246472.pdf

Redbook – z/OS Intelligent Resource Director (SG24-5952) Redbook – Effective zSeries Performance Monitoring Using RMF (SG24-6645)

In German: Das Betriebssystem z/OS und die zSeries – Die Darstellung eines modernen Großrechnersystems, M.Teuffel/R.Vaupel, ISBN 3-486-27528-3

Internet Links

WLM SRM RMF WSC Software Pricing IRD Redbooks http://www.ibm.com/s390/wlm http://www.ibm.com/s390/srm http://www.ibm.com/s390/rmf http://www.ibm.com/support/techdocs http://www-1.ibm.com/servers/eserver/zseries/swprice/ http://www-1.ibm.com/servers/eserver/zseries/ird/ http://www.redbooks.ibm.com/

Additional Documentation

Fechnology · Connections · Results

z/OS R12 DFSMS Manuals http://www-03.ibm.com/systems/z/os/zos/bkserv/r12pdf/#dfsms

Redbook – "Batch Modernization on z/OS" (sg24-7779) Redbook – "Parallel Sysplex Batch Performance" (SG24-5952)

Internet Links DFSMS OM XE for Stg Redbooks

http://www-03.ibm.com/systems/storage/software/sms/index.html http://www-01.ibm.com/software/tivoli/products/omegamon-xe-storage http://www.redbooks.ibm.com/

